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Numbers and statistical jargon may make jurors’ eyes glaze over, but
defense counsel must be alert to show the errors of plaintiffs’ experts

By Bruce R. Parker and
Anthony F. Vittoria

DEFENSE counsel can attack junk science
through the effective use of biostatistical
evidence. It can be used against plaintiffs’
experts both in cross-examination and in
using defense experts to explain why plain-
tiffs’ theories are incorrect. This article
will focus primarily on how to use statisti-
cal evidence to cross-examine plaintiffs’
experts effectively.

Biostatistical analysis is, like other disci-
plines, shrouded in jargon that is hard to
cut through. Effectively using biostatistical
data1 requires cutting through the jargon
and understanding the statistical concepts.

The first sections of this article discuss
statistical concepts.2 There is concentration
on experimental design, since statistical
data is no better than the study that pro-
duced it, and there is focus on factors that
can negatively affect the results of an ex-
periment and how scientists attempt to
“control” for these factors.3 Next is a
primer on statistical analysis. It explains
many of the statistical concepts discussed
in medical literature and used by experts to

support their opinions and the process by
which researchers statistically analyze data
to determine whether the experiment pro-
duced a “significant” result.4 Last, there are
examples of how experts and attorneys
mislead juries and courts with statistical
testimony. Strategies are offered for effec-
tively cross-examining an expert who re-
lies upon erroneous statistical data.

ables that are not the object of the study. This is done
by altering the design of the study to eliminate or
reduce the effect of the “confounding” variable. See
David H. Kaye & David A. Freedman, Reference
Guide on Statistics” in REFERENCE MANUAL  ON SCI-
ENTIFIC EVIDENCE 351, n.56 (Federal Judicial Cen-
ter, 1994).

4. In statistics, the term “significant” has a mean-
ing other than “important” or “noteworthy.” To re-
searchers, “significance” refers to whether a study
has indicated the “presence” of an association, and
not its magnitude or importance. Richard Lempert,
Statistics in the Courtroom, 85 COLUM. L. REV.
1098, 1101 (1985).

1. The term “statistical data” is a misnomer. For
simplicity, as used in this article, it simply means
raw data that have been statistically analyzed for
purposes of determining whether the data are statisti-
cally significant.

2. Some of the statistical concepts discussed in
this paper were addressed in the particular context of
epidemiology in BRUCE R. PARKER, Understanding
Epidemiology and Its Use in Drug and Medical De-
vice Litigation, 65 DEF. COUNS. J. 35 (1998).

3. In experimental design, the term “control” has
a meaning other than actual manipulation. “Control-
ling”—whether it be a “bias,” “factor” or a “vari-
able”—refers to the process by which researchers at-
tempt to minimize the effect on the study of vari-
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STUDY DESIGN FACTORS

A. Research Design

One of the goals of researchers is to de-
termine whether relationships exist be-
tween or among variables. They achieve
their goal by designing experiments and
accurately recording the data from the ex-
periment. Counsel must review scientific
literature and expert testimony based on
experimental (either laboratory or clinical)
data to consider whether the article or testi-
mony is flawed by poor study design.
Pointing out errors in study design is an
excellent way to challenge expert testi-
mony under Daubert5 and at trial.

1. Reliability

Reliability is similar to the concept of
reproducibility. It refers to how well the
research design produces results that are
the same, or very similar, each time the
data are collected. An easy way to think of
reliability is to consider a scale. A “reli-
able” scale will report “the same weight for
the same object time and again.”6 This does
not mean that the scale is accurate—it may
always report a weight that is too high or
too low—but it always makes the same
error each time.

2. Validity

Validity is synonymous with accuracy,
and it has internal and external compo-
nents. Whether the data properly measure

the group sampled is a reflection of its de-
gree of internal validity. To the extent the
data can be generalized, they have external
validity. A study that has high internal va-
lidity, but is nevertheless not generalizable,
can be misleading.7

The concepts of validity and reliability
are interrelated. A researcher can have an
experimental design that produces reliable,
but invalid results—that is, the scale al-
ways reports that you weigh 175 pounds,
when you in fact weigh 180—but you can-
not have valid results that are not reliable.8

3. Sensitivity

The sensitivity of a test refers to the per-
centage of times that the test correctly
gives a positive result when the individual
tested actually has the characteristic or trait
in question. For example, the sensitivity of
a test that is designed to determine high red
cell counts is the percentage of people who
have high red cell levels and who test posi-
tive.

When the test correctly reports that a
person has high red cell counts, the result
is a true positive. Conversely, when the test
reports that a person does not have high red
counts when, in fact, that person does, the
result is a false negative. The numerical
value of a test’s sensitivity is obtained by
dividing the number of true positives by
the total of true positives and false nega-
tives in the sample.9

4. Specificity

The specificity of a test refers to the per-
centage of times a test correctly reports
that a person does not have the characteris-
tic under investigation. When a test shows
that a person who has a normal red cell
count is negative, the result is a true nega-
tive. A false positive result occurs when
the test incorrectly reports a high red cell
count, when in fact that person is normal.
Specificity is determined by dividing the
number of true negatives by the total of
true negative plus false positive respond-
ers.10

5. Daubert v, Merrell Dow Pharmaceuticals
Inc., 509 U.S. 579 (1993).

6. Kaye & Freedman, supra note 3, at 341.
7. ROBERT H. FLETCHER, SUZANNE W.

FLETCHER & EDWARD H. WAGNER, CLINICAL  EPI-
DEMIOLOGY 22 (3d ed. 1996).

8. Kaye & Freedman, supra note 3, 342.
9. LEON GORDIS, EPIDEMIOLOGY 58 (1996).

The formula for sensitivity is: Sensitivity = TP/(TP +
FN) where TP is the number of true positives in the
sample and FN is the number of false negatives in
the sample. Id. at 60.

10. Id. The formula for specificity is: Specificity
= TN/(TN + FP) where TN is the number of true-
negatives in the sample and FP is the number of
false-positives in the sample.
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5. Predictive Value

Although the sensitivity and specificity
of a test give a crude measure of its accu-
racy, they do not tell a physician the prob-
ability that an individual who tests positive
actually has the condition being measured.
This is provided by the positive predictive
value of the test. The positive predictive
value expresses the probability that an indi-
vidual with a positive test result does, in
fact, have the trait, while the negative pre-
dictive value expresses the likelihood that
an individual with a negative test result
does not have the characteristic in ques-
tion.11

The predictive value of a test is depends
on the prevalence of the condition in the
group tested and the test specificity.12

6. Sampling

If researchers could ask all people in the
world who drink one or more glasses of
milk per day whether they suffer or have
suffered from cancer, there would be no
need for a statistical analysis to determine
if milk is associated with cancer. The re-
searcher could simply look at the data and
determine, with complete confidence,
whether a relationship exists. However, ob-
taining information from everyone who

drinks milk would be impossible. As a re-
sult, researchers select a sample of indi-
viduals to study, and then they statistically
analyze the data obtained from these indi-
viduals to extrapolate findings to the an en-
tire population.

There are several different ways in
which researchers “sample” a population,
but “the result of a sampling study is no
better than the sample it is based on.”13 The
major trap that must be avoided when a
researcher samples a population is bias,
and the researcher must eliminate or con-
trol for it. An excellent opportunity exists
to discredit an expert whose opinion is
predicated on studies that fail to avoid this
problem.

a. Selection Bias

Selection bias is the failure when recruit-
ing participants to obtain a fair and true
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dictive value measurement and PV
-
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9, at 65.
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affects the predictive value of the test because the
proportion of false results relative to true results will
vary as the number of individuals with the character-
istic under study varies. GORDIS, supra note 9, at 65.
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cross-section of the population under in-
vestigation.14 Selection bias will affect the
validity of a study if it results in an
overrepresentation of one type or class of
individual.15

A classic example of selection bias that
jurors readily understand is the 1936
Literary Digest presidential poll, which
predicted that Alf Landon, the Republi-
can candidate, would defeat Franklin
Roosevelt, the Democratic candidate, 57 to
43 percent. In fact, Roosevelt won the elec-
tion by 62 to 38 percent. The sampling
model was flawed by a bias that was inher-
ent in the manner in which participants
were recruited for the poll. Names were
chosen from “telephone books, rosters of
clubs and associations, city directories,
lists of registered voters and mail order
listings.”16 However, in 1936, only the
wealthy had telephones, and the people
whose names were on the other lists also
tended to be more affluent and Republican.
Thus, despite the fact that the responses
were statistically significant, the data were
useless because of design flaws in the sam-
pling model.

Another example jurors understand is
that of a researcher asking pedestrians for
their opinion on whether people in large
cities are less polite than they were 15
years ago. As two men approach, the re-
searcher must choose whom to question.
One is nicely dressed, with a clean shave
and a smile, while the other is in blue
jeans, a stained undershirt, three days
growth and a scowl on his face. Many in-
terviewers would probably choose to ap-
proach the well-dressed man. Selecting
subjects in this manner, known as “inter-

viewer bias,” would not generate a true
cross section of the population since less
well-dressed, surly looking men are being
systemically excluded.17

In some instances, bias is generated sim-
ply by human desire to give pleasing an-
swers to an interviewer. Male interviewers
probably get different responses from fe-
male subjects than female interviewers
would on sensitive personal issues. An in-
terviewer aware of the study hypothesis
may project more empathy with the ex-
posed subjects than controls, thereby evok-
ing greater trust. A greater feeling of trust
among the exposed group will generate
more revealing and complete answers than
from the controls.

b. Random Sampling

A good study is one that uses a sampling
technique that obtains a representative
sample of the population being studied. A
truly representative sample is one in which
every source of bias has been removed.
Therefore, researchers try to control for as
many of the different sources of bias as is
practicable under the circumstances.

The most effective way to control for
sampling biases is to use a purely random
sample, which is obtained by selecting par-
ticipants in such a way that each member
of the population being studied has an
equal chance of being selected. By using
this method a researcher eliminates all se-
lection bias.18

Obtaining a purely random sample, how-
ever, is usually impossible because people
cannot be forced to participate in a study.
To the extent it is possible, it is often pro-
hibitively expensive. For these reasons, re-
searchers have devised ways to obtain
samples that approximate purely random
samples. None of these methods, however,
provides a researcher with the level of con-
fidence that the sample is free of bias as
does a purely random sample.

7. Controlled Experiments

“Controlled experiments are, far and
away, the best vehicle for establishing a

13. DARRELL HUFF, HOW TO LIE WITH STATISCIS
18 (1954).

14. CHARLES H. HENNEKENS & JULIE E. BURN-
ING, EPIDEMIOLOGY IN MEDICINE at 34 (ed. Sherry
Mayrent 1987).

15. Kaye & Freedman, supra note 3, at 344, n.22.
16. Id.
17. HENNEKENS & BURING, supra note 14, at

275.
18. HUFF, supra note 13, at 21; Kaye & Freed-

man, supra 3, at 345 n.27.
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causal relationship.”19 A well-designed ex-
periment shows how one variable, the de-
pendent variable, responds to changes in
other variables, the independent or ex-
planatory variables, which are under the
control of the experimenter.

a. Independent Variables

The independent variable is the pre-
sumed cause of whatever effect the re-
searcher is interested in studying. For ex-
ample, if a researcher is attempting to de-
termine whether alcohol causes or is corre-
lated with cancer, alcohol consumption
would be the independent variable and can-
cer would be the effect.

b. Dependent Variables

The dependent variable is the “effect,”
or the variable that the researcher measures
—that is, the size, rate or quality of such
variables is “dependent” on the presence,
absence or size of the independent vari-
ables.

c. Treatment and Control Groups

A researcher is not able accurately to
measure the effect that an independent
variable has on a dependent variable with-
out having a baseline against which to
compare the effect.20 For this reason, re-
searchers usually divide their subjects into
two separate groups—the “treatment” or
“test subject” group and the “control sub-
ject” group. The test subjects are those who
either possess the disease that the re-
searcher is interested in studying or have
been or will be exposed to the independent
variable. The controls are those who do not
possess the quality or have not been ex-
posed to the independent variable.

8. Weaknesses in Experimental
Design

When designing studies, researchers
must be aware of pitfalls that may affect
the experiments adversely. Two of the ma-
jor concerns are confounding variables and
biases.

a. Confounding Variables

Confounding variables affect the depen-
dent variable but are not the subject of the
study. Since confounding variables often
correlate with independent variables, “it
is generally not possible to determine
whether changes in the independent vari-
ables caused changes in the dependent or
whether changes in the confounding vari-
able did.”21 For example, to determine
whether there is a correlation between ex-
ercise and general health, the researcher
could survey a random sample of people to
determine whether their general state of
health increased as their exercise level in-
creased. However, most would not be sur-
prised to hear that those who exercise more
also tend to eat healthier. Thus, it would be
difficult, if not impossible, to determine
whether it was the exercise, or just the gen-
erally good health habits of the exercisers,
that increased their over-all health. There-
fore, good health habits are confounding
variables.

b. Biases

Since a controlled study requires sam-
pling test and control groups, the issues re-
garding all forms of bias, including selec-
tion bias, must be analyzed with each study
on which an expert relies. Broadly defined,
bias is any form of systemic error that pro-
duces an erroneous estimate of the associa-
tion between variables. It differs from a
confounding variable in that a confounder
has a true association with the dependent
variable. Bias either creates an association
when none exists or masks a true associa-
tion. Bias can exist in how the participants
are selected or in how the data is collected
and analyzed.22 Unless the bias is spread
equally between the test and control
groups, its presence may invalidate the bio-
statistical data relied on by an expert.

19. Kaye & Freedman, supra note 3, at 347.
20. Id.
21. Id. at 348.
22. HENNEKENS & BURING, supra note 14, at 34.
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9. Design Controls

Researchers are not powerless to control
confounding variables and biases. There
are several tools that can assist in control-
ling these factors and help limit their effect
on the validity of experiments. Each may
be a good area for exploration at an
expert’s deposition.

a. Brainstorming

As simplistic as it sounds, one of the
most important things that a researcher can
do while designing a study is to brainstorm
to determine the possible confounding
variables and biases.23 In the exercise/
health example, an experimenter could in-
clude in the questionnaire not only ques-
tions relating to the amount of exercise in
which the individual engages during a typi-
cal week but also questions about other
health-related practices, such as diet and
tobacco use. In this way, the experimenter
could use only those individuals who have
little or no differences, other than the fact
that one group exercises, while the other
group does not.

b. Randomization of Subjects

Another method for controlling con-
founding variables and bias is to assign the
participants of a study randomly into the
treatment and control groups. Random as-
signment of subjects helps control for con-
founding variables and biases that are not
obvious or readily apparent by “balancing
out” any of the differences that may exist
in the participants. “Randomization also
ensures that the assignment of subjects to
treatment and control groups is free from
conscious or unconscious manipulation by
investigators or subjects.”24

c. Blind and Double-blind
Experiments

Another method of controlling for con-
founding variables and biases is to perform
the study “blind” or “double-blind,” A
blind design is one in which the partici-
pants do not know whether they have been
assigned to the control or treatment group.
For example, in a study that looks at the
association between aspirin use and heart
attacks, a blind study could be constructed
by giving both control and treatment sub-
jects a white pill, with half of the pills
being aspirin and the other half placebos.
Keeping subjects ignorant of their status
helps prevent them from acting in a way
they think the researchers would expect
persons in their group to behave.

A double-blind experiment is one in
which both the participants and the re-
searchers are unaware of to which group a
particular participant has been assigned.
While the researcher who interacts with the
participants doesn’t know to which group
each participant has been assigned, another
researcher does have this information. This
procedure helps to prevent researchers
from treating the participants differently
depending on whether they are in the con-
trol or the treatment group.25

10. Pilot and Feasibility Studies

Scientific studies often are performed as
pilot or feasibility studies, in contrast to a
“confirmatory” study. Each is designed for
a specific purpose and the data generated
from each must be kept distinct from each
other. Researchers may have a theory that
an association exists between two vari-
ables, but not a firm hypothesis of what
that relationship is. Or researchers may
have no idea that there is an association
and simply want to do a superficial analy-
sis to see if any association is suggested by
the data.

In both cases, researchers will conduct
pilot or feasibility experiments with many
dependent and independent variables in the
hope of finding an association between two

23. Id. at 276-85.
24. Kaye & Freedman, supra note 3, at 348, 349

n.44.
25. HENNEKENS & BURING, supra note 14, at

192.
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or more of the variables. There studies are
cheaper than confirmatory studies and are
done in order to see if the expense is war-
ranted to explore a possible association be-
tween an independent and dependent vari-
able with a confirmatory study.

Experts who assert the existence of an
association based on data from a pilot
study are subject to considerable criticism.
Pilot studies by their nature involve data
dredging and multiple statistical compari-
sons, both of which often generate false
positive results. The more variables re-
searchers include in pilot studies, the more
likely the studies will generate results that
suggest an association between two vari-
ables, but an association that is caused only
by chance. Thus, while they may appear to
disclose interesting results, pilot studies of-
ten show nothing more than chance varia-
tion.

Data that can legitimately suggest a sta-
tistical association between two or more
variables are derived from “confirmatory”
experiments. These studies are character-
ized by hypothesis testing that utilizes
well-described null and alternate hypoth-
eses, a large number of subjects or trials, a
small number of both dependent and inde-
pendent variables, and rigorous statistical
analysis.

STATISTICAL PRIMER ANALYSIS

Once researchers conclude a study, they
will have information or data generated by
the study. If the data are in numerical form,
they will be analyzed to determine whether
the results are statistically associated or are
the result of chance.

Statistical analysis of data can never
prove a causal relationship between vari-
ables. There will always be a chance, no
matter how slight, that the evidence of an
association was merely due to chance.

There are several basic statistical con-
cepts used by researchers and litigation ex-
perts, but there are types of statistical
analysis that should be used with particular
data. Statistical concepts are misused by
plaintiffs’ experts, but statistical data can

be used to attack the experts’ opinions. It
bears repeating, however, that regardless of
how convincing the data appear to be, they
data are only as good as the study that gen-
erated them.

A. Basic Concepts

The following discussion briefly defines
different types of data and their character-
istics of central tendency and dispersion.
All are essential features of statistical
analysis.

1. Discrete and Continuous Variables

Discrete variables are those that assume
a numerical value having a finite number
of possible values. Examples of discrete
variables include the number of people in a
group, an amount of dollars, number of
days in a period of time, or responses to
“yes/no” questions. All of these variables
can assume only a whole number.

Continuous variables are those that can
assume an infinite number of values be-
cause the interval between each whole
number value can be almost immeasurably
small, limited only by the sensitivity of the
measuring device. Examples of continuous
variables include blood pressure, blood
chemistry values, height, etc.26

2. Measures of Central Tendency

The central tendency of a data set de-
scribes the tendency of the data points in
the set to cluster or center around a certain
numerical value. There are essentially three
such measures, each with its own advan-
tages and drawbacks.

The mean of a data set is “equal to the
sum of the measurements divided by the
number of measurements contained in the
data set.”27 The mean is what most people
think of when the “average” of a data set is
mentioned. The mean is a useful statistic
and is easily understood. It is most often

26. JAMES T. MCCLAVE & FRANK H. DIETRICH
II, A FIRST COURSE IN STATISTICS at 114-16 (1983).

27. Id. at 21.
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used in a statistical analysis of two groups.
It does, however, have one major draw-
back. The mean is unduly influenced by
“outlier” data points.28 For example, con-
sider this data set: 3, 3, 4, 5, 7. The mean is
4.4. If, however, 7 is changed to 25, the
mean jumps to 8, a value greater than all
but one of the data points.

The median is another measure of cen-
tral tendency (or “average”). It is the value
that represents the 50th percentile of the
data set—that is, half of the data points in
the set are greater than or equal to the me-
dian and the remaining half are smaller
than or equal to the median.29 While the
median is not as commonly used as the
mean, it has one important virtue not pos-
sessed by the mean. Unlike the mean, the
median is only minimally affected by outli-
ers.30 For example, the median of the data
set 3, 3, 4, 5 and 7 is 4. If 7 is again
changed to 25, the median remains un-
changed at 4.

The final measure of central tendency is
the mode. The mode is the most commonly
observed value in a data set.31 In both of
the above examples, regardless of whether
the largest data point is a 7 or a 25, the
mode remains 3, because there are more
data points with a value of 3 than any other
value.

3. Measures of Dispersion

A measure of dispersion is a statistic
useful in describing a data set. Measures of
dispersion essentially describe how data
points within the set are distributed. Again,
there are essentially three different statis-
tics that describe the dispersion of a data
set—the “range,” the “variance” and the

“standard deviation.” Each has its own ad-
vantages and drawbacks.

a. Range

The “range” is the measure of variation
that is easiest to compute and understand.
It is the difference between the largest and
smallest values in a data set. For example,
in the data set 2, 3, 4, 6, 8, 9, 12, 15, the
range is 13 (i.e., 15-2). A major weakness
of the range to describe the dispersion in a
data set is that it is an insensitive measure
“because two data sets can have the same
range and be vastly different with respect
to data variation.”32 For example, assume
one data set is 1, 4, 4, 4, 4, 6, and another
is 1, 2, 3, 4, 5, 6. Both have the same range
of 5, but there is more variation in the sec-
ond than in the first.

b. Variance

The “variance” of a data set is a more
sensitive measurement of its dispersion,
and it is more difficult to calculate. The
variance is calculated by first obtaining the
mean, then determining the distance from
the mean of each of the data points, squar-
ing these distances, adding the squared dis-
tances together, and calculating their
mean.33

Although this sounds difficult, an ex-
ample will help. Consider a data set of 1, 2,
2, 3, 4, 4 and 5. The mean is 3. To cal-
culate the variance, first determine how far
each data point is from the mean by
subtracting each data point from this
mean: (3-1=2), (3-2=1), (3-2=1), (3-3=0),
(3-4=-1), (3-4=-1), (3-5=-2). Next, square
each of these distances: (2)2=4, (1)2=1, (1)2

=1, (0)2=0, (-1)2=1, (-1)2=1, (-2)2=4. The
squared distances are added, and their
mean determined: (4+1+1+0+1+1+4)/7.
The result (1.714) is the variance.

While the variance of a data set is an
abstract measurement, it is a more statisti-
cally informative measure than the range
because it considers all of the numbers
within a data set, rather than just the end
points. The drawback of using the variance

28. An “outlier” is a data point far removed from
the bulk of the data. Kaye & Freedman, supra note
3, at 402.

29. Id. at 400.
30. MCCLAVE & DIETRICH, supra note 26, at 24.
31. Kaye & Freedman, supra note 3, at 400.
32. MCCLAVE & DIETRICH, supra note 26, at 28-

29.
33. Id. at 29.
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is that the resulting value is in squared
units.34 If the data points in a data set repre-
sent the amount of time in minutes it takes
for an aspirin tablet to start to relieve pain,
the variation would be reported as squared
minutes—that is, minutes2.

c. Standard Deviation

The “standard deviation” is the third
measure of dispersion, and it incorporates
the benefits of the variance statistic while
solving its one major drawback. The stan-
dard deviation reflects the dispersion of in-
dividual data points around the mean of a
sample.35 It is calculated by taking the
square root of the variance.36 The standard
deviation is a very useful statistic, and it
serves as a basis for many of the more so-
phisticated analyzes discussed below.

4. Normal Distribution

The normal, or Gaussian, distribution of
continuous data is a bell-shaped curve.
Discrete data generally are not normally
distributed.37 This distribution represents a
population with a variable that has unique
characteristics. The most important of
these is that the mean, median and mode of
the population variable are the same
value.38 For example, a variable that pro-
duces a distribution that approaches nor-
malcy may be the heights of all of the
males in the world. There would be an ab-
solute tallest height as well as an absolute
shortest, with the “hump” of the distribu-
tion probably somewhere in the middle,
and with the tails to both sides of the hump
being approximately equally thick and
long. The bulk of the heights would gather
around the hump, and would become less
dense toward the shortest and the tallest.

Unfortunately, many variables produce
data that are far from normal, either being
bimodal or skewed. Skewed data are that
for which the mean, median and mode are
different values.39 Consider the salaries of
everyone in the United States. This distri-
bution would be skewed towards lower in-
comes—that is, the hump of the graph

would be to the left, where all of the in-
comes in the lower range would be plotted,
while there would be a long “tail” to the
right of the graph where very few, but ex-
tremely high, incomes would be graphed.
Figure 1 illustrates examples of distribu-
tions which are skewed to the right, nor-
mal, and skewed to the left.40

In data that are continuous and normally
distributed, the standard deviation signifies
exactly how the data points are spread
around the mean. That is, in normally dis-

34. Although it is not immediately apparent why
you must square the distances from the mean, it be-
comes obvious on closer inspection. In every data
set, if one adds all of the distances of the data points
to the mean, the result would be zero. The negative
and positive distances from the mean will cancel
each other. Although it would be possible to use the
mean of the absolute differences from the mean, the
mean of the square of the distances is more useful
and easier to interpret. Id. at 30.

35. HENNEKENS & BURING, supra note 14, at
239.

36. MCCLAVE & DIETRICH, supra note 26, at 31.
37. Kaye & Freedman, supra note 3, at 401.
38. MCCLAVE & DIETRICH, supra note 26, at

144.
39. Id. at 25.
40. Id.
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tributed data sets, approximately 68 per-
cent of the data points in the set lie within
plus or minus one standard deviation from
the mean of the data set, approximately 95
percent within plus or minus two standard
deviations of the mean, and approximately
99 percent within plus or minus three stan-
dard deviations of the mean. Figure 2 illus-
trates this concept.41

5. Standard Error and Confidence
Intervals

Imagine taking the mean of every pos-
sible sample from a population and plotting
the means on a graph. The mean of these
means would necessarily be the true mean
of the population, and the individual
sample means would be distributed around
this point, with most falling near it and less
being further away. Analogous to the stan-
dard deviation for individual data points,
the standard error represents the distribu-
tion of sample means.

The two statistics are related, and many
experts confuse the standard deviation and
standard error. To repeat, in normally dis-
tributed data, the standard deviation quanti-
fies the spread of the individual data points
around the mean of a single data set. The
standard error, on the other hand, quanti-
fies the spread and variability of the means
of all of the data sets obtained from a

population that is normally distributed. The
standard error is useful because, while the
mean of a single data set rarely, if ever,
will match the actual mean of the popula-
tion from which the data were obtained, the
standard error quantifies the likelihood that
the real mean of the population is within a
certain range of values of the mean of the
sample.42

Like the standard deviation, approxi-
mately 68 percent of all of the possible
means of all of the possible combinations
of data sets will fall within plus or minus
one standard error of the mean of all of the
means. Furthermore, if one obtains a mean
of a data set and calculates the standard
error, one can be 68 percent “confident”
that the true mean of the underlying popu-
lation lies within plus or minus one stan-
dard error of the mean obtained, and 95
percent confident that it lies within plus or
minus two standard errors. A 68 percent
“confidence interval,” therefore, is the
range of possible sample mean values be-
tween plus and minus one standard error
from the mean the researcher has obtained,
while a 95 percent confidence interval is
the range of possible sample mean values
between plus and minus two standard de-
viations of the mean the researcher has ob-
tained.

This is best explained by example. Opin-
ion polls are samples of an entire popula-
tion (say, registered voters). When poll-
sters report their findings, they might state:
“52 percent – 4 percent of registered voters
favor Joe Smith for president.” What they
are saying is that they have obtained a
mean (52 of 100, or 52 percent) from one-
data set, and they are 95 percent confident
that the true mean of the population falls
within plus or minus 4 percent (that is, 4 of
100 (.04), or 4 percent) of the mean they
have obtained.

B. Hypothesis Testing

The preceding discussion defined several
characteristics of data, but now look at
concepts of statistical methodology that are
critical to understanding how a hypothesis

41. CHAP T. LE & JAMES R. BOEN, HEALTH AND
NUMBERS at 85 (1995).

42. Id.
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is tested statistically to determine if data
support the study hypothesis. In Subsection
C, the characteristics discussed in Subsec-
tion A and the concepts in B come together
to explain scientific statistical tests that are
commonly reported in medical literature.

1. Null and Alternate Hypotheses

A study begins with the formulation of a
hypothesis. This step involves more than
simply saying, “I think that sugar con-
sumption causes tooth decay.” In fact, re-
searchers do the exact opposite.

Hypothesis testing is difficult to under-
stand because the process involves at-
tempting to disprove a negative.43 Rather
than stating, “Sugar causes tooth decay,”
the null hypothesis is stated as, “There is
no association between tooth decay and
sugar.”

Before the study is done, the researcher
also develops an alternate hypothesis that
is generally the proposition that the re-
searcher hopes to prove. The alternate hy-
pothesis in the sugar example could be that
there is a difference in the incidence of
tooth decay among people who eat sugar,
without specifying whether there is more
or less decay. It is also permissible for the
researcher to articulate the alternate hy-
pothesis as having an affirmative effect,
such as, “Sugar eaters have more tooth de-
cay than those who do not eat sugar.”

2. Alpha and Beta Errors

Before data are statistically analyzed, the
investigator must establish the alpha at
which the analysis will be done. Alpha, or
Type I error, is the probability of a false
positive result. In the context of hypothesis
testing, a Type I error occurs when the null
hypothesis, although actually true, is erro-
neously rejected in favor of the alternate
hypothesis. By convention, scientists typi-
cally establish alpha at no higher than .05
(5 percent). Many investigators, however,
argue that alpha should be no higher than
.01 (99 percent).

Beta, or Type II error, is that which oc-

curs when the null hypothesis is ac-
cepted—that is, the investigator concludes
that there is no association between the in-
dependent and dependent variables—when
a true difference exists between the inde-
pendent and dependent variables. It repre-
sents the probability of a false negative re-
sult.

There is a trade off between alpha and
beta. A decrease in alpha (thereby reducing
the probability of a false positive result)
will have a corresponding effect of increas-
ing beta (increasing the probability of a
false negative result).44

3. Significance

Once alpha is set (for instance, at .05),
the researcher can perform a statistical
analysis of the data using one or more of
the tests discussed later in this article. The
statistical analysis will produce a statistic,
known as the P statistic, which represents
the probability of generating data (from the
same population) as extreme as, or more
extreme than, the result obtained, assuming
the null hypothesis is correct.45

The following example illustrates what
the P value represents. Imagine that a re-
searcher is interested in ascertaining
whether there is a difference in the salaries
of male and female lawyers. The null hy-
pothesis is that the salaries are not differ-
ent. The alternate hypothesis could be ei-
ther that the men make money than the
women, or that there is a difference be-
tween the salaries without specifying in
which direction the difference lies.

For purposes of this example, assume
that the alternate hypothesis is that the men
have higher salaries. After collecting data
from a group of male and female lawyers,
the researcher discovers that the mean in-
come of the men is $2,000 more per year
than the mean of the women. The P value
for this data would represent the probabil-

43. MCCLAVE & DIETRICH, supra note 26, at
216.

44. LE & BOEN, supra note 41, at 128-29.
45. Kaye & Freedman, supra note 3, at 378.
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ity that, assuming there is no difference be-
tween the salaries, the difference in salaries
was the result of chance variation within
the population.

If alpha is .05 and the P value for the
above data ia .01, the researcher would
conclude that there is only a 1 percent
probability that a salary difference of
$2,000 or more could be obtained by
chance alone—that is, assuming the null
hypothesis is true. Since the alternate hy-
pothesis is a better explanation for the re-
sults, the researcher “rejects” the null hy-
pothesis and “accepts” the alternative hy-
pothesis as the more plausible explanation
of the data. Stated simply, a P value of .01
means the researcher can be 99 percent
sure that the result obtained was not due to
chance.

When a researcher obtains a result that
has a P value less than or equal to 5 per-
cent (p < .05), the result is termed, in statis-
tics, a “significant” result. “Significant” in
this context does not mean important or
noteworthy. It simple means that the result
probably is not due to chance.

If, in this example, the data produced a P
value of .1, the $2,000 per year difference
in the mean salaries would not be a statisti-
cally significant result, and the researcher
could not reject the null hypothesis in favor
of the alternate hypothesis. However, this
does not mean that the researcher must ac-
cept the null hypothesis and conclude that
there is no difference. Rather, the re-
searcher could conclude either that the data
are consistent with the null or are inconclu-
sive with respect to the null.

There are several different factors that
affect whether a researcher obtains a statis-
tically significant result. They include the
following.

a. Power

The size of the difference between two
or more variables only partly determines

whether the result is statistically signifi-
cant.46 A difference that is very small can
be statistically significant if the sample size
is sufficiently large. Conversely, a differ-
ence that is very large may be significant
despite relatively few samples. For ex-
ample, a researcher could find that the dif-
ference in the salaries was $10,000, but
that this difference was not significant. A
second researcher could find that the dif-
ference in the mean salaries between the
men and women lawyers in his or her study
was only $15, but that the difference was
statistically significant. How?

Simple. Imagine that the first researcher
had a sample size of two in each group:
two male lawyers with a mean salary of
$60,000, and two female lawyers with a
mean salary of $50,000. The second re-
searcher had sample groups of 5,000 men
and 5,000 women. From this, it is easy to
see why the first difference would not be
statistically significant, while the second
difference might be statistically significant.
The second researcher would be better able
to extrapolate (or generate) the results from
the study of 10,000 lawyers to the general
population of all lawyers much more confi-
dently than could the first researcher.

This example illustrates the concept of
statistical “power.” In more technical
terms, “power is the probability of [cor-
rectly] rejecting the null hypothesis when
the alternative hypothesis is right.”47 Thus,
assuming that a true difference exists be-
tween two variables, the higher the power,
the more likely it is that the study will pro-
duce a statistically significant result dem-
onstrating the difference. It is clear that if
the differences are real, but small, only
studies with high power will detect the dif-
ference at a level of statistical significance.

The power of a statistical test is affected
by many variables, including the number
of data points (subjects) in the study, the
size of the difference, if any, between the
two populations under study, and the maxi-
mum P value used before significance is
declared (5 percent, 1 percent or some
other figure).48

46. Id. at 381-82.
47. Id. at 381, n.152.
48. Id. at 381-2.
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b. One- and Two-tailed Tests

Another factor that determines whether a
significant result will be obtained is
whether the researcher uses a one-tailed or
a two-tailed significance test. Whichever
test is used depends on how the alternate
hypothesis is formulated at the beginning
of the study.

A researcher will use a two-tailed statis-
tical test when simply searching for a dif-
ference and ignoring in which direction the
difference lies.49 For example, in the salary
study, a researcher would use a two-tailed
test to determine whether male and female
lawyers have different salaries, regardless
of whose was higher. By using a two-tailed
test, the 5 percent false positive rate is split
between both ends of the bell-shaped
curve. That is, 2.5 percent of the probabil-
ity that the difference is due to chance goes
to the side that represents the possibility
that men’s salaries are higher, while 2.5
percent goes to the side that represents the
possibility that men’s salaries are lower.
This is shown in Figure 3.

When a researcher postulates a direction
in which the alternate hypothesis lies, a
one-tailed test is used. In a one-tailed test,
all 5 percent of chance that is permitted for
a significant result is allotted to one side of
the curve.50 Since the entire area of 5 per-
cent lies on one side, it is generally twice
as easy to achieve statistical significance
with a one-tailed test than a two-tailed test
if the difference in fact lies in the direction
hypothesized. Put simply, the P value pro-
duced by a two-tailed test is twice as large
as the P value for a one-tailed test. How-
ever, for the reasons discussed later in this
article, counsel should be skeptical of a
study that reports significant results using a
one-tailed test, especially if the results
would not be significant if the researcher
had used a two-tailed test.

Returning to the salary study, a two-
tailed test (that is, seeking to find a differ-
ence without concern in which direction
the difference lies) might not find that a
$2,000 difference in the mean salaries is
statistically significant. However, if the al-

ternate hypothesis was stated so that a one-
tailed test could be used (that is, male law-
yers make more money than female law-
yers), it is entirely conceivable that the
one-tailed test could find that a $2,000 dif-
ference is statistically significant at a P
value less than .05.

Figure 3(A) illustrates a one-tailed test
and 3(B) a two-tailed test. The area under
the unshaded portion of the curve repre-
sents data consistent with the null hypoth-
esis. The shaded areas to the right of the
one-tailed test and to both sides of the two-
tailed tests are what researchers call the
“rejection region.”51 If the researcher ob-
tains a sample mean that falls in the shaded
region, a significant result has been
achieved, and the researcher is justified in
rejecting the null hypothesis. In the one-
tailed test, the rejection area to the right of
the mean of the distribution is larger than
the rejection area to the right of the two-
tailed test, but the one-tailed test does not
have a corresponding rejection area to the
left of the mean. Nevertheless, if the total
shaded area in both tests were calculated,
they would be equal.

The benefit of the one-tailed test in terms
of achieving statistical significance is
shown in Figure 4. Assume the question is
whether men who develop prostrate cancer
and who smoke are younger than those
with prostrate cancer and who do not
smoke. In Study #1, men with prostrate
cancer who smoke are younger than those
with cancer who do not smoke. In Study
#2, there was no difference in the ages of
men with prostrate cancer regardless of

49. See generally concerning one- and two-tailed
tests, LE & BOEN, supra note 41, at 134-35.

50. MCCLAVE & DIETRICH, supra note 26, at
223.

51. Id.
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their smoking history. In Study #3, the
mean age of men with prostrate cancer
who smoke is greater than non-smokers.

In Figure 4, lines A and B represent the
rejection region on both ends of the bell-
shaped curve produced in a two-tailed test.
Line C represents the beginning of the re-
jection region for a one-tailed test. A two-
tailed test would find results to the left
(Study #1) and right (Study #3) of lines A
and B to be statistically significant and
thereby permit the investigator to reject the
null hypothesis.

Since a one-tailed test is one directional,
only those values falling to the right of line
C (studies #2 and #3) would be statistically
significant in a one-tailed test. Study #2
would not be significant with a two-tailed
test but would be significant with a one-
tailed test. The area between lines C and B
represents the benefit in terms of reaching
statistical significance by analyzing data
with a one-tailed rather than a two-tailed
test.

C. Statistical Tests

A number of variables dictate the best
statistical test to use in analyzing a particu-
lar data set. The variables include what the
investigator wishes to find (i.e., are two
variables correlated either positively or
negatively, are there significant differences
in the mean of two groups, etc.), the type
of data (continuous v. discrete), sample

size, and others. Because a number of vari-
ables bear on the most appropriate statisti-
cal test to use in a particular situation, it is
not possible in this article to describe each
statistical test that counsel might encounter
when reviewing medical articles or listen-
ing to an expert testify.

The following discussion seeks to ex-
plain some of the simpler, yet commonly
encountered statistical tests referenced in
peer-reviewed journals and relied on by ex-
perts in support of their opinions on causa-
tion. This should give the reader a better
sense of how commonly mentioned statisti-
cal tests are intended to be used and of the
situations in which the tests are not being
used properly.

1. Chi-squared (x2).

For a study that has produced discrete
data (counts, whole numbers), the chi-
squared is the simplest and most common
method to determine whether the observed
difference in proportions between the pop-
ulations under examination are statistically
significant.52 For example, assume a re-
searcher wants to study whether there is a
correlation between educational levels and
typical beverage consumed. The table be-
low is “two way” because there are only
two variables—education and beverage
preference.

The null hypothesis would be that the
variables under “Education” are unrelated
to the variables in the columns under “Bev-
erage.” Comparing each cell (39 high
schoolers favored Coke) to another with a
chi-squared analysis would produce a P
value reflecting whether there is a statisti-
cally significant difference among the data.

Beverage
Education Coke Milk Beer

High School 39 31 32

Some College 30 39 33
College Graduate 34 37 37

There are limitations on the use of the
chi-squared test. There must be a minimum

52. HENNEKENS & BURING, supra note 14, at
249.
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sample size of five counts in each cell be-
fore a chi-square test can be used.53 If the
sample size is too small, the chi-squared
test would produce an incorrect result.54

2. T-Test (t) and Z-Test (z)

For a study that has used less than 30
subjects and has produced continuous data,
the t-test is the most common method to
determine whether the observed difference
in the means of two groups is statistically
significant.55 Different types of t-tests are
used depending on whether the two groups
are related. An “unpaired” t-test is used if
the means of two unrelated groups are be-
ing compared. If, however, a study looked
at the pre- and post-effect of treatment on a
group of people, the data are “paired,” and
a paired t-test would be used. A t-test can
be used in one and two-tailed testing.

If the study sample size exceeds 30, then
a z-test is used.56 The z-test is almost iden-
tical to the t-test, except that it uses a nor-
mal distribution as its model, rather than a
t-distribution.57

3. Analysis of Variance (F)

Analysis of variance (ANOVA) is simi-
lar to a t-test in that it is used for continu-
ous data, but it allows one to determine
whether the relationship between more
than two independent groups and the de-
pendent variable is statistically signifi-
cant.58 For example, to determine whether
there is a difference among the salaries of
African-American, Hispanic-American,
and white lawyers, a researcher would use

an ANOVA to analyze the data obtained
from a study. ANOVA cannot be done as a
one-tailed test.

4. Multiple Regression Analysis

Multiple regression analysis is not a test
to determine statistical significance but a
method to describe the extent and nature
(positive or negative) of an association.59

Multiple regression analysis is most often
used in large complex studies in which
there are multiple independent variables
and a single dependant variable. Multiple
regression analysis is a complicated statis-
tical tool in which the variance within the
values assumed by the dependent variable
is compared and analyzed not only as
against the variation within the indepen-
dent variables, but also as against the inter-
action among the independent variables.60

Multiple regression analysis is helpful
because it enables researchers to study sev-
eral different explanatory variables, as well
as the effect of the interaction between
these variables. For example, suppose a re-
searcher wants to determine not only
whether the gender of a lawyer (inde-
pendent variable 1, or IV1) affects the
lawyer’s salary (the dependent variable),
but also whether the size of the firm (IV2)
in which the lawyer works affects salary,
and whether the lawyer’s work experience
affects salary (IV3). Multiple regression al-
lows the researcher to determine the rela-
tionships and interaction between all of
these different variables.

A typical result may show that gender
affects salaries significantly (men earn

proaches normalcy, but has more variability.
MCCLAVE & DIETRICH, supra note 26, at 233.

56. HENNEKENS & BURING, supra note 14, at
358.

57. MCCLAVE & DIETRICH, supra note 26, at
208.

58. Id. at 298.
59. FLETCHER, supra note 7, at 191.
60. Daniel L. Rubinfeld, Reference Guide on

Multiple Regression, in REFERENCE MANUAL  ON
SCIENTIFIC EVIDENCE 419, 427 (Federal Judicial
Center, 1994).

53. Id. at 357. In a 2x2 chi-squared test, it could
take as few as 20 subjects to have the minimum nec-
essary. For a 3x2 chi-squared, it would take at least
30 subjects, for a 3x3 chi-squared, it would take at
least 45 subjects, and so on.

54. If the researcher has less than five subjects
per cell, then another statistical test is the “Fisher’s
Exact Test.” HENNEKENS & BURING, supra note 14,
at 357. However, the Fisher’s Exact Test can be used
only in a 2x2 table. It could not be used in the ex-
ample above, which is a 3x2 table).

55. HENNEKENS & BURING, supra note 14, at
246. The t-test is based on a distribution that ap-
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more than women), experience signifi-
cantly affects salaries (the more experi-
ence, the larger the salary), and that firm
size affects salaries (the smaller the firm,
the less compensation). The results also
may show that there is an interaction be-
tween two or more of these variables. That
is, increased experience affects women’s
salaries more than men’s (the gap between
the salaries of the two genders narrows as
experience increases), or that increased ex-
perience has a relatively negative effect on
small-firm lawyers as compared to large-
firm lawyers (the gap between the salaries
of large-firm lawyers and small-firm law-
yers widens as experience increases).

Another aspect of multiple regression
analysis is that, unlike the other statistical
tests discussed, multiple regression analy-
sis provides a model by which a researcher
can predict how a dependent variable will
be effected by changes in one or more of
the independent variables.61 For example,
suppose the study described above ob-
tained only information on the effect of the
first 10 years of experience on a lawyer’s
salary. Multiple regression analysis would
provide a formula so that the researcher
could make a prediction as to the effect of
15, 20 or 30 years of experience.

There are various forms of multiple re-
gression analysis. The correct approach de-
pends on a variety of factors, such as
whether the dependent variable is continu-
ous or discrete. Multiple regression analy-
sis may be either linear or non-linear, de-
pending on whether there is reason to be-
lieve that changes in the independent vari-
able may have differential effects on the
independent and dependent variables.62 The
sophisticated nature of multiple regression
analysis usually requires counsel to have a
statistical expert evaluate the statistical evi-
dence relied on by the opposing expert to
ensure that the correct model was used for
the data.

PRACTICE POINTERS

A. Introduction

The effective use of biostatistical data to
attack plaintiffs’ experts’ testimony begins
in the experts’ depositions. At that stage,
defense counsel must ferret out the as-
sumptions and the raw data from which
successful challenges can be asserted under
Daubert, and if the Daubert challenge
fails, to impair in the experts’ credibility
before the jury at trial. If the raw data and
assumptions are not discovered at deposi-
tion, it may not be possible for defense
counsel and their experts to convincingly
demonstrate in a Daubert proceeding or at
trial the erroneous nature of the statistical
data on which the expert relies. In prepar-
ing for an expert’s deposition, counsel
should already be thinking about ways to
challenge the expert’s biostatistical data.

There are a number of ways in which
defense counsel can attack plaintiffs’ ex-
perts’ biostatistical data, beginning with
study design up through, and including, the
statistical analysis of the data. Although
the need to cross-examine plaintiffs’ ex-
perts on biostatistical evidence in order to
assert a successful Daubert challenge prob-
ably would not be questioned by many trial
lawyers, many litigators, particularly after
reviewing the statistical concepts presented
above, might question the wisdom of
cross-examining an expert at trial on bio-
statistics.

One might reasonably argue that such a
cross could not be understood by the jury
and would therefore bore them, and if the
cross was ineffective, it might enhance the
expert’s credibility. But, read on.

B. When to Cross-examine

There are cases in which an expert who
relies on statistically flawed data should
not be cross-examined on the biostatistical
data. These are cases in which the data are
not central to the expert’s opinion, the trial
judge is unwilling to control an argumen-
tative and evasive expert, the jury has
exhausted its ability to absorb any more

61. Id. at 420.
62. Id. at 424 n.16, 427.
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complex scientific information, and the
cross-examiner is not comfortable with
his or her knowledge of statistical prin-
ciples.

Do not, however, underestimate the au-
thoritative and persuasive sounding nature
of statistical data when deciding whether to
attack a plaintiff’s expert on biostatistical
data. Left unchallenged, that evidence can
easily and falsely impress jurors because of
the “power” of numbers. Something as
simple as a decimal point often makes a
“fact” sound more definite. Reporting a
value of 25 sounds less impressive than re-
porting it as 25.765.

There are cases in which an expert’s reli-
ance on erroneous statistical data must be
attacked on cross-examination. Such in-
stances include, but are not limited to,
when:
• The statistical methodology used by

the expert renders his testimony unreliable
and subject to exclusion under Daubert.
• An expert is not knowledgeable about

statistics and demonstrates a lack of under-
stand of the statistical basis of the opinion,
thus offering a means to exclude the testi-
mony at trial for lack of proper foundation
and/or to undermine the expert’s credibility
with the jury if the testimony is permitted.
• The premise of the expert’s opinion is

data that, although analyzed with correct
methodology, are nevertheless done incor-
rectly.

• The expert asserts that “highly statisti-
cally significant” data at the 95 percent
confidence level far exceeds the relatively
meager 51 percent preponderance of the
evidence standard applicable in civil cases,
and therefore has “proven” the plaintiff’s
case with scientific objectivity.

An expert who relies on data that are not
statistically significant or, although pur-
porting to be statistically significant, are
invalid because of flaws in the study de-
sign, is a candidate for a Daubert chal-
lenge. The key to having the testimony ex-
cluded is being able to demonstrate that the
statistical methodology used by the expert
was inappropriate or that fundamental

flaws in the study design render the data
invalid.

In some cases, experts rely on others to
analyze their data statistically. These ex-
perts are susceptible to an effective cross
on the statistical errors in their data. If the
error is such that it invalidates the data, the
expert’s inability to defend the data may
cause jurors to question his qualifications.

Finally, experts who mislead jurors by
confusing concepts of statistical signifi-
cance (95 percent probability) and the bur-
den of persuasion (51 percent preponder-
ance of the evidence) must be attacked on
cross-examination. This is discussed more
fully later.

In each of the above instances, defense
counsel often does not have the luxury of
waiting until their own experts testify to
dispel the erroneous impressions left with
the jury by the plaintiff’s expert. The next
section discusses how to determine from
what the expert has said, what is subject to
attack.

C. How to Find Errors in
Statistical Data

1. Talking Back

When reading an article or listening to
an expert testify, there are questions de-
fense counsel should ask whose answers
will suggest whether the testimony is rea-
sonably sound statistically. Darnell Huff
offers the following five simple, yet effec-
tive questions to ask before accepting sta-
tistical data.63

• “Who says so”? [Look for bias, both
conscious and unconscious. Is the propo-
nent of the data biased or is there bias in
the manner in which the data are pre-
sented? Was unfavorable data withheld?
Does the witness possess the statistical
knowledge to do the analysis?]
• “How does he know”? [Was there

bias in the sample or the way the data were
collected? Was the sample large enough
for the result to have any meaning? Is a

63. HUFF, supra note 13, at 123-42.
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claimed correlation large enough to be im-
portant?]
• “What is missing?” [Statistics, such as

percentages, are generally meaningless
without raw data. Claimed correlations be-
tween two variables should not be taken
seriously if the standard error (SE) or stan-
dard deviation (SD) of the estimate has not
been given. Was the best measure of the
“average” chosen to explain the data?]
• “Did someone change the subject”?

[Look to see if the raw data has been
switched in the conclusion. For example,
are reported changes simply due to redefin-
ing what is being reported (i.e., crime)
rather than a true change? Surveys are of-
ten misinterpreted. For example, a survey
of voting habits represents only what
people say they did, not what they actually
did. Look for validation of survey data.
Huff cautions, “One thing is all too often
reported as another.”]
• “Does it make sense”? [Is a statistic

based on an unreasonable and/or unproven
assumption? Has the statistic been ac-
cepted because the “magic of numbers”
caused a “suspension of common sense”?]

The following hypothetical demonstrates
the effectiveness of Huff’s questions. The
hypothetical demonstrates that simple ex-
amples can be used in cross-examination
and with defense experts to explain diffi-
cult statistical concepts to jurors.

Assume the plaintiff’s expert is asked to
offer an opinion on whether baseball player
A is a better hitter than player B. The ex-
pert begins by explaining to the jury what
the batting average means and how the av-
erages (mean) of the two batters were com-
puted. He then explains that the averages
were analyzed statistically to determine
whether the difference was “statistically
significant.” The expert explains that un-
like the 51 percent burden of proof in a
civil trial, the scientific burden of proof is
considerably more stringent at 95 percent.

By mathematically comparing the two
batting averages, the expert boasts that he
has been able to “prove” to a 99 percent
level of “certainty” that A is a better hitter

because his batting average is statistically
significantly higher than B’s. The expert
further explains that since there is only a 1
percent chance that his opinion could be
wrong, he has “scientifically proven with
certainty” that at the “relatively low” 51
percent preponderance of the evidence
standard, A is better than B.

Without any training in statistics, most
baseball fans would instinctively reject or
at least distrust this conclusion because of
“what is missing”—the raw data. An ex-
pert’s claim that data is statistically signifi-
cant, without revealing the raw data, is
meaningless. The misleading nature of the
baseball average opinion is revealed by
looking at the data. If the expert’s analysis
was based on A and B each having 500
plate appearances, depending on the stan-
dard deviation, a five point difference in
average would be statistically significant.

If an expert is not forced in cross-exami-
nation to reveal the raw data—in this in-
stance, the actual batting averages—the
jury will be misled into believing that a
large (“significant”) difference exists be-
tween them. Several jurors, however, if
given the raw data, would not agree that a
difference of .005 in batting averages, al-
though “statistically significant,” is a suffi-
cient basis from which to conclude that A
is better than B.

Conversely, suppose the expert told the
jury that the difference in the averages was
over 100 points and that the difference was
statistically significant. This opinion also
could be misleading since the statistical
significance could have been achieved with
less than 50 plate appearances. Again, sev-
eral jurors would not accept the expert’s
opinion that A is a better hitter than B once
they learned from the raw data that the sta-
tistically significant result was based on so
few plate appearances.

Finally, assume that the expert explains
that his opinion is based on a 50 point sta-
tistically difference in batting averages,
with each A and B having had 400 plate
appearances. Even this data, although
seemingly complete, might be misleading.
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For example, the jurors might not accept
the expert’s opinion if they learned that the
expert had included 100 at bats that A had
in the minor leagues in the calculations.
Additional important variables that could
affect the jurors’ interpretation of the testi-
mony include whether there was a sub-
stantial difference in B’s run production,
despite his lower batting average, and
whether, unlike B, A’s average resulted, in
part, to having better hitters before and af-
ter him in the batting order.

2. Statistical Concepts to Consider

a. Statistical Evidence Is No Better
than the Model That Produces It

If the null and alternate hypotheses were
not properly formulated, then the experi-
mental model selected to study the null and
alternative hypotheses will have produced
flawed data. If the null and alternative hy-
potheses were properly formulated, con-
sider whether the experiment designed to
test the hypotheses was flawed because of
bias, size, confounders, etc. For example,
assume that an expert has testified that an
implant is toxic based on a statistically sig-
nificant reaction in animals exposed to the
implant relative to the negative controls. If
the animal model chosen for the experi-
ment reacts to the physical properties of
the implant, as distinguished from its
chemical properties, a conclusion that the
observed effect resulted from a toxic reac-
tion would be erroneous.

b. Was the Data Collection Biased?

Biostatistical data generated in studies
that are not blinded are suspect and provide
a fertile area on which to cross-examine an
expert. Jurors can easily understand the ef-
fect of bias if it is explained to them by
using, in cross-examination, examples such
as the Literary Digest poll. Some jurors
will perceive a study as unfair, if not dis-
honest, if the interviewer who solicits in-
formation from test subjects knows the
study hypothesis and therefore is better
able to formulate questions in a way that

will increase the probability of finding a
significant result.

c. Has the Data Been Analyzed and
Explained Fairly and
Accurately?

Is the biological data continuous or
discreet? An expert who wants to find sta-
tistically significant results may use incor-
rect statistical tests to create a significant
result. The first step in analyzing whether
the correct test has been used by the expert
is to determine if the data is continuous or
discrete.

Unfortunately, by the time a deposition
is taken, counsel may find that the raw data
no longer exists. This effectively prevents
a defense expert from analyzing the data.
In such cases, in addition to a Daubert
challenge, counsel should move to exclude
the expert’s testimony on grounds of spo-
liation of evidence. An expert who has dis-
carded or otherwise claims not to have the
raw data is fundamentally no different
from an expert who destroys physical evi-
dence. Exclusion of the expert’s testimony
is the remedy many courts will give a liti-
gant who has been prejudiced by the de-
struction of evidence.

Is the data normally distributed or
skewed? Discrete data generally is not nor-
mally distributed. Most biological data that
is continuous is also generally not normally
distributed.64 Although skewed continuous
data can be mathematically transformed to
normal data, experts may forget to trans-
form skewed data and improperly analyze
data by a statistic method appropriate only
for normally distributed data. In such in-
stances, a proper analysis may destroy an
expert’s claim of statistical significance.

The converse also is true. It is not inap-
propriate for experts to disregard outliers
and by doing so conclude that data is nor-
mally distributed. What is inappropriate is
when an expert, after claiming that data are

64. FLETCHER, supra note 7, at 33-34.
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normal by excluding outliers includes the
outliers in the statistical analysis and
claims statistical significance based on dif-
ferences created by the outliers.

Did the expert use the correct “aver-
age” in presenting the data? Biological
data frequently are characterized by outli-
ers that have a disproportionate effect on
the mean of the group. An expert who
wants to say that a difference exists be-
tween two variables will perform a statisti-
cal comparison by using the mean rather
than median value. Defense counsel can ef-
fectively demonstrate the unfairness of this
approach by plotting the data on a scatter
diagram. This will show that, except for
the few outliers, there is no real difference
between the vast majority of the control
and “exposed” groups. The theme of the
cross-examination when an expert uses the
wrong “average” is, “A difference is a dif-
ference only if it makes a difference.”65

Is a claim of statistical significance the
result of multiple comparisons? Assume
that a researcher believes that drinking two
or more cups of coffee a day is unhealthy
but is unsure what the adverse health ef-
fects are. The researcher might study this
hypothesis by designing a cohort study in
which one group of coffee drinkers is com-
pared to a control group of non-coffee
drinkers. A number of dependent variables
are then followed for each of the exposed
and control subjects, such as high blood
pressure, nervousness, cancer, etc. At the
end of the study, each of the outcome
events (dependent variables) is evaluated
to see if coffee drinking is statistically sig-
nificantly associated with an increased rate
for any of them.

Assume that in a group of 20 compari-
sons, an expert finds one event—say, heart
rate—that is statistically significantly in-

creased in coffee drinkers. An ethical re-
searcher in this situation must either cor-
rect for the multiple comparisons or at least
acknowledge that the result was one among
multiple comparisons.66 Often, however,
the fact that multiple comparisons were
performed is not revealed in researchers’
articles.

A claim of statistical significance based
on having performed multiple comparisons
for which there has not been statistical ad-
justment is methodologically incorrect and
subject to a Daubert challenge.

The mathematical basis for challenging
the results of multiple comparisons is not
intuitively easy to understand. At a 95 per-
cent confidence (true positive) level, the
probability of getting a false positive result
as each of the 20 comparisons is analyzed
is 5 percent. However, if after all compari-
sons are done, only one is statistically sig-
nificant, the probability that the one posi-
tive finding (in the group of 20) is falsely
positive is not .05 but .64, well above the
level of statistical significance.

This is because in a group of 20, the true
positive rate for any one comparison is
.9520 (or .36). The corresponding alpha
or false positive rate increases to .64
(1-.36=.64). To correct for the multiple
comparisons, one would divide the original
P value by the number of comparisons that
were done. Only if the adjusted P value is
equal to or less than .05 can an expert
claim statistical significance.

From this simple calculation, one can see
that when multiple comparisons are done
and no correction is made for them, a
claimed significant positive result is most
probably not correct and can be effectively
attacked.

Was the data the expert claims is sta-
tistically significant generated in a pilot
study? It is not always obvious whether
the data on which an expert relies were
generated in pilot studies. Authors of pilot
studies often concede that their data are
preliminary. In fact, such studies often call
for further studies to confirm their results.

65. HUFF, supra note 13, at 58.
66. “Data dredging” is the process by which an

investigator performs multiple comparisons of data
to find a statistical association between a number of
independent and dependent variables.
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Generally, the problem arises not from the
pilot studies, but from papers that are writ-
ten subsequently and that inappropriately
refer to the pilot study as having produced
data that is statistically significant. Not in-
frequently, it is the second paper on which
an expert relies to support the claim of sta-
tistical significance.

To ensure that plaintiffs’ experts do not
pass off preliminary data as confirmatory
data, defense counsel must read the origi-
nal study that generated the data to deter-
mine if it has been properly interpreted. Do
not assume that the peer reviewers will
have checked secondary references.

Assuming the data are statistically sig-
nificant, are they biologically signifi-
cant? The mere fact that data are statisti-
cally significant does not mean that they
are biologically relevant or important. Ex-
perts who declare that a statistical associa-
tion exists between two variables often use
post hoc reasoning to conclude that the re-
lationship must be causal because the P
value is very small.

An effective way in cross-examination to
demonstrate that one cannot necessarily
conclude that simply because there is a
high statistical probability that an associa-
tion is not due to chance (a low P value
less than .05) is to use examples of highly
statistically significant correlations that are
completely spurious. For example, earlier
in this century, a statistically significant
correlation existed between the salaries of
Massachusetts ministers and the price of
rum in Havana.67 This is a good example to
use with jurors because most would under-
stand that it would be silly to assume cau-
sality between the two factors simply be-
cause of a statistical significant correlation.
Incidentally, the variable that created the
correlation, but was omitted from the
analysis, was the fact that at the time there
was worldwide inflation. That affected
both ministers’ salaries and the price of
rum in Havana.

Another approach by plaintiff’s experts
is the unfair extrapolation of a conclusion

from a statistically significant correlation.
Assume a statistical correlation exists in
rats between exposure to freon at 700 ppm
and hair loss. The statistical correlation,
however, is only true for the dose that pro-
duced the effect. An expert should not be
permitted to assume that a statistical corre-
lation exists at other dose levels in differ-
ent animal models or humans. To demon-
strate this point to jurors, use a simple ex-
ample of a strong positive correlation be-
tween rainfall and crops. Assume that four
inches of rainfall is correlated to six-foot
corn stalks. Jurors would laugh at an expert
who opined that based on this data, one
could conclude that eight inches of rain
would produce 12-foot corn stalks. As silly
as this example may be, it is, unfortunately,
not substantively different from what is of-
ten heard in toxic tort and product liability
cases.

Have the data been demonstrated
graphically in a way that is misleading?
Jurors learn better from visual images.
Consequently, presenting evidence through
a variety of visual mediums (videotape,
slides, computer animations, etc.) helps
them better understand what they are being
told. In much the same way, it is more ef-
fective when describing scientific data to
show it graphically. Not surprising, experts
present data graphically in ways that distort
its true effect.

A simple example is shown in Figures 5
and 6. By simply expanding or contracting
the scales of the graph, depending on the
effect one wishes to achieve, a consider-
ably different visual image of the data is
created.

67. HUFF, supra note 13, at 90.
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Has the expert used a post hoc power
calculation in an effort to discredit data
that doesn’t support his opinions? Ex-
perts who want to tell a jury that a causal
relationship exists between a drug or de-
vice and a disease are often confronted
with epidemiologic studies that fail to find
that the exposure produced a statistically
significant increased relative risk of the
disease. Faced with “negative” data, the
plaintiff’s expert must find a way to ex-

plain away the data. This is often done by
the expert with a post hoc power analysis.
As previously discussed, power refers to
the probability that a study will detect, at a
level of statistical significance, a difference
between two groups when a true difference
exists. The expert explains that the nega-
tive study is uninformative and therefore
not inconsistent with his opinion because
the study did not have sufficient power to
detect the difference that he knows exists.
Post hoc power calculations are not stan-
dard methodology for interpreting data and
should be strenuously objected to under
Daubert.

Power calculations are an important tool
for designing a study. They help research-
ers know the probability that certain condi-
tions (study size, disease prevalence) will
be able to find a difference, if one exists.
But power “is exclusively a pretrial con-
cept; it is a probability of a group of pos-
sible results (namely, all statistically sig-
nificant outcomes) under a specified alter-
native hypothesis. A study produces only
one result.”68

Once a study has been done and the data
are obtained, the actual data are the best
measure of determining what was shown,
not conclusions reached by post hoc power
analysis.

The unstated rationale for the calculation is
roughly as follows: It is usually done when
the researcher believes that there is a treat-
ment difference, despite the non-significant
result. She uses the [post hoc power calcula-
tion] to prove that the study result was too
small to “detect” [the result the expert be-
lieve exists] and therefore the experiment’s
“negative” verdict is not definitive, that is, it
does not eliminate the possibility of the . . .
difference being real.

There are two reasons why this exercise is
unhelpful. First, it will always show that
there is low power (less than 50%) with re-
spect to a non-significant difference, making
tautological and uninformative claim that a
study is “underpowered” with respect to an
observed non-significant result. Second, its
rationale has an Alice-in-Wonderland feel,
and any attempt to sort it out is guaranteed to
confuse. The conundrum is a result of a di-

68. Steven N. Goodman & Jesse A. Berlin, The
Use of Predicted Confidence Intervals When Plan-
ning Experiments and the Misuse of Power When
Interpreting Results,” 121(3) ANNALS OF INTERNAL
MED. 201 (August, 1994).
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rect collision between the incompatible pre-
trial and post-trial perspectives.69

In a Daubert hearing, the plaintiff carries
the burden of proving the assertions made,
just as a scientist carries the burden of
proving a scientific hypothesis. It is not a
substitute for supporting data for an expert
to say that data inconsistent with the theory
expounded are not sufficiently statistically
strong to disprove the theory. When there
are data to support the expert’s opinion—
that is, epidemiologic studies fail to find an
increased risk of disease—it is irrelevant
for the expert to opine that “negative” data
lack statistical power to disprove his opin-
ion.

Counsel should strongly object when-
ever an expert says that a study had insuffi-
cient power to detect the difference he be-
lieves exists.

Has the expert created a statistically
significant result by decreasing the con-
fidence level? Plaintiffs’ attorneys and ex-
perts often mislead jurors and judges by
confusing and misusing concepts of the
burden of persuasion and the 95 percent
confidence level. The expert typically ar-
gues that his data ought not be judged at
the 95 percent confidence level because
that level is not relevant in a civil trial,
contending that although the scientific
community demands a very high level of
“95 percent certainty” before an observed
association can be considered as real, the
burden in a civil trial is considerably lower,
at 51 percent.

If permitted, the expert will demonstrate
graphically that the 51 percent level (repre-
senting the preponderance of the evidence
standard) lies far below the 95 percent
level of scientific probability. The expert
explains that the scientific standard of 95
percent probability is arbitrary and that
there is nothing inherently scientific about
data that is proven to be statistically sig-
nificant at the 95 percent level, compared
to data that is statistically significant at 90
percent.

The expert often will attempt to enhance

credibility with the jury by telling them
that the relied-on data was statistically sig-
nificant but not at the 95 percent level,
quickly pointing out, however, that even at
the lower level (90 percent), the evidence
is compelling since the legal burden of
proof is “only” 51 percent.

The first step in refuting this testimony is
understanding the statistical argument. At
first blush, it seems counterintuitive to say
that by reducing the confidence level to 90
percent, data that is otherwise insignificant
can become statistically significant. It is
easy to jump to the erroneous conclusion
that at 90 percent the results must be “less
certain,” and therefore the expert is wrong
to claim that by reducing the confidence
level from 95 to 90 percent, the data be-
comes significant. This interpretation,
however, is incorrect, and arguing it will
not block the testimony.

When data are reported at the 95 percent
confidence level, it means that alpha has
been set at .05 (5 percent). When the confi-
dence level (true positive rate) is reduced
to 90 percent (and alpha is correspondingly
increased to .10), the confidence interval
gets smaller. In other words, at 90 percent
the interval has narrowed so that the inves-
tigator is 5 percent less certain that the re-
sult was not due to chance.

This approach, if disclosed in the
expert’s deposition, should be attacked in a
Daubert hearing. The correct argument is
that, contrary to the expert’s testimony, the
95 percent level is the minimal acceptable
level at which data can be proved signifi-
cant. Reducing the confidence level to 90
percent is an extreme deviation from scien-
tific convention and should be rejected un-
der Daubert.

Testimony that scientific evidence in a
civil trial need not meet the stringent 95
percent level confuses issues of admissibil-
ity with the burden of persuasion. Just as a
lay witness is not permitted to guess or
speculate, an expert should not be per-
mitted to guess (opine?) about speculative

69. Id. at 202.
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scientific “facts.” Testimony from an ex-
pert about scientific data that do not meet
accepted scientific standards is just as
speculative, from a scientific perspective,
as a lay witness’s guess about what may
have happened. Only scientific data that
meet the scientific convention of 95 per-
cent are admissible to be considered by the
jury, with all the other evidence, in deter-
mining whether the totality of the evidence
meets the plaintiffs’ burden of persuasion.

Has the expert improperly used a one-
tailed test? Experts sometimes manufac-
ture statistically significant data by im-
properly using a one-tailed test. As shown
above, a one-tailed test produces a P value
one half as large as a two-tailed test. It is,
therefore, twice as easy to achieve statisti-
cal significance with a one-tailed test. It is
considered the weakest statistical data.70

The problem is not, however, with the test
itself, but rather it is the post-hoc manner
in which it is used by some experts.

Assume an expert believes that sugar af-
fects the heart rate. The null hypothesis
would be that there is no relationship be-
tween sugar consumption and increased
heart rates. The alternate hypothesis could
be that there is a difference without speci-
fying whether the difference is an increase
or decrease. The appropriate statistical
analysis of the data would be a two-tailed
test. Assume a two-tailed test does not find
that the difference between the exposed
and control groups is statistically signifi-
cant. Rather than reporting the non-statisti-
cal results, the researcher may be tempted
to reformulate the alternate hypothesis to
postulate that sugar increases the heart rate
and re-evaluate the data using a one-tailed
test. By doing so, the expert may obtain
statistical significance. This practice is
not considered appropriate methodology
among statisticians and should be attacked
under Daubert.

Conversely, if the researcher was not
able to find, despite using a one-tailed test,
that the difference in heart rates among
sugar consumers was not statistically sig-
nificant, this is compelling evidence
against the alternative hypothesis that
sugar causes increased heart rates. If a
plaintiff’s expert has analyzed data using a
one-tailed test and is not able to obtain sta-
tistically significant results, do not permit
the expert to dismiss the importance of the
data when telling the jury that the study
simply wasn’t large enough to reach statis-
tical significance.

D. Strategies to Increase the Effective-
ness of the Cross-examination
on Biostatistical Evidence.

An increased confidence in statistical
knowledge and understanding statistical
jargon should improve defense counsel’s
ability to find the weaknesses and errors in
statistical data relied on by a plaintiff’s ex-
pert. How best to employ that information
and confidence?

There is nothing about biostatistical evi-
dence that lends itself to a unique approach
in cross-examination. Strategies that are ef-
fective in cross-examining experts on other
forms of complex scientific evidence work
equally well. For those lawyers less experi-
enced in cross-examining experts on scien-
tific concepts, these suggestions may help
enhance the clarity and effectiveness of a
cross-examination.

1. Use Foundational Questions to
Establish the Purpose and Impor-
tance of Statistically Analyzing
Data Correctly

Planning trial cross-examination of an
expert on biostatistical evidence begins
with the deposition of the expert. If the
deposition was done properly, experienced
trial counsel will have a sense of what
points can be made on cross-examination
that relate to the erroneous biostatistical
data relied on by the expert. Regardless of
the points made in the deposition, however,

70. Kaye & Freedman, supra note 3, at 383
n.157.
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sophisticated litigation experts who under-
stand that their testimony may not be ad-
missible if it is not shown to be reliable
under Daubert, will probably concede the
purpose and importance of properly statis-
tically analyzing data.

Beginning the cross with foundational
questions regarding the importance of sta-
tistics serves at least two purposes. First, it
gives counsel an idea whether the expert
appears to be uneasy about responding to
statistical questions. The expert’s re-
sponses will suggest whether more sophis-
ticated questions might be productive.
Conversely, if the expert is evasive and ar-
gumentative and if the trial judge does not
control the expert in responding to founda-
tional questions, these factors suggest that
further questioning may not be productive.

However, when the expert’s statistical
error is fundamental and critical, counsel
may elect to proceed with the statistical
cross-examination even if the court is not
controlling the expert. In such situations,
counsel’s points probably are not going to
be immediately clear to the jury. The
record created by the cross, however, will
give the defense expert a basis on which to
explain how the plaintiff’s expert’s testi-
mony was misleading. To minimize jury
impatience with a cross-examination that is
not yielding understandable and meaning-
ful concessions, defense counsel should
alert the jury in the phrasing of the ques-
tions that defense experts they will hear
later in the case will be commenting or cri-
tiquing the plaintiff’s expert’s testimony.

2. Educate Jurors by Using Examples
Relevant to Their Lives

Throughout this article, examples have
been offered that will help defense counsel
explain statistical concepts to jurors in
simple terms. Baseball averages, rolls of
the dice, and correlations between the price
of Havana rum and minister’s salaries are
examples that can be incorporated into a
cross-examination to educate the jury.
Teaching by analogy is effective, in part,
because it allows counsel to make difficult

subjects more understandable and enter-
taining to the jury.

3. Use Visual Aids in the
Cross-examination

To the extent possible, defense counsel
should incorporate visual aids in the cross-
examination. For example, it would be
very difficult for jurors to understand the
difference between one-tailed and two-
tailed tests without using a visual aid.
Similarly, if the plaintiff’s expert has relied
on outliers to produce a result, the most
effective cross-examination may be to sim-
ply show the jury the correct distribution of
the data. At worst, the plaintiff’s expert
will not concede the accuracy of the de-
monstrative exhibit. This puts the expert’s
credibility directly at issue when the de-
fense expert later explains why the plain-
tiff’s expert was incorrect and misled the
jury.

4. Keep the Statistical Cross-
examination Short and Simple

One danger for lawyers who develop ex-
pertise in scientific disciplines is a ten-
dency to demonstrate their knowledge by
engaging in cross-examinations that are
understood, at best, only by the experts.
While demonstrating one’s proficiency in
science is important in establishing cred-
ibility with the court, the jury and the op-
posing expert, it is surprisingly easy to be-
come boorish and ineffective when the
cross-examination becomes nothing more
than a clash of egos. Unless the cross is
being done only for the appellate record, a
prolonged, boring and complex cross-ex-
amination damages one’s case more than it
helps, regardless of the technical conces-
sions that are ultimately obtained. The sig-
nificance of the concessions will be lost on
the jury.

CONCLUSION

Biostatistical evidence, both because of
its mathematical foundation and forebod-
ing jargon, is often overlooked by defense
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counsel when planning the attack on plain-
tiffs’ experts’ opinions. This is a mistake,
particularly in light of Daubert. Expert tes-
timony that relies on statistical data gener-
ated by inappropriate methodology is sub-
ject to exclusion under Daubert. Similarly,
biostatistical evidence can be used effec-
tively at trial to impeach the credibility and
qualifications of a plaintiff’s expert who is

unfamiliar with the statistical basis on
which the data he discusses is predicated.

Although sophisticated statistical con-
cepts may be beyond comprehension of
many jurors, basic concepts that are critical
to an expert’s opinion can be effectively
explained to the jury through simple ex-
amples and with the use of appropriate vi-
sual aids.


